
U.S. DEPARTMENT OF THE INTERIOR 

GEOLOGICAL SURVEY

A 2D FFT filtering program for image processing with examples

by

Ken Watson 1

Open-File Report 92-265 

1992

DISCLAIMER

The program in Appendix A was written in Fortran-77 for a SUN 3/470 computer2 . 
Although program tests have been made, no guarantee (expressed or implied) is made by the 
author regarding program correctness, accuracy, or proper execution on all computer systems. 
This report is preliminary and has not been reviewed for conformity with U.S. Geological 
Survey editorial standards.

1 Denver, Colorado.

2 Any use of trade names in this report is for descriptive purposes only and does not imply 
endorsement by the U.S. Geological Survey.



CONTENTS

Abstract ........................................................ 1

Introduction ..................................................... 1

Method ........................................................ 2

Simple noise patterns ................................................ 4

Filter design ..................................................... 6

Application to noise removal in aircraft and satellite data ......................... 7

Filtering strategies ................................................. 9

Additional uses of the 2D FFT .......................................... 10

Summary ....................................................... 12

Bibliography: ..................................................... 12

APPENDIX A. Fft2d.filter program .............................. 14

APPENDIX B. 2D FFT of some fundamental patterns. ......................... 31
Image impulse. .............................................. 31
Periodic pattern of impulses along edge. ............................... 31
Image "line". ................................................ 32
Periodic line pattern. ........................................... 32
Evenly spaced point pattern. ...................................... 33



A 2D FFT filtering program for image processing with examples
Ken Watson

Branch of Geophysics, U.S. Geological Survey 
Box 25046 MS 964, Denver CO 80225

Abstract
The 2D FFT is a powerful means for removing noise from images because efficient filters can 

be designed based on the observed spatial or frequency patterns of the noise. This paper provides a 
generalized computer program for filtering images together with an illustrated introduction to the main 
concepts of the 2D Fast Fourier Transform in image processing and examples of noise removal from a 
variety of spacecraft and aircraft systems. Following the examples a general strategy for filtering is 
developed: filter only derivative products (not original images), first remove noise evident in the 
transform, and apply a "minimum" filter to reduce residual noise.

In addition to noise filtering the method also has application to such diverse image processing 
problems as enlargement, instrument response correction, registration, and extraction of albedo and slope 
information. Examples are provided to illustrate these concepts.

Introduction
(The text that follows is an expanded version of a paper submitted to Geophysics and in addition 

includes a generalized filtering program in an appendix.) Noise is often present in remote sensing images 
and particularly data acquired from aircraft. Although not visually evident in the original images, noise 
can be a significant problem in computed derivative images (ratios, principal components, thermal inertia, 
band depth, or other analytical algorithms). There are several advantages to using a two-dimensional Fast 
Fourier Transform(2D FFT) to reduce noise by filtering in the frequency domain. Coherent noise is 
generally conspicuous in an image display of the amplitude of the Fourier transform either as bright spots 
or lines. When noise is observed as a pattern of harmonics (e.g., due to an AC power supply), the 
mathematical relation of the harmonics can be used to design a noise removal filter that extends to other 
frequencies where the noise is not as obvious. Sometimes, noise in an image is not immediately apparent 
in the transform. If the pattern in the spatial domain has a simple form, then a mathematical relationship 
can be used to relate the noise pattern on the image to its transform. The development of a filter involves 
experimenting with methods to block out, to interpolate across, or to reduce smoothly the observed bright 
pattern. Standard image processing methods (i.e. contrast stretching and enlarging) can then be applied 
to enhance this area of the transform image that included the bright pattern and find local maxima for 
constructing an appropriate filter. In addition, the FFT approach provides a method to model noise 
(Rose, 1989) and, in some cases, to detect the source of the noise and to develop special purpose filters 
for similar data sets.

The fast Cooley-Tukey algorithm for computing discrete Fourier transforms provides a means 
for filtering in the frequency domain and has greatly expanding the field of digital signal processing 
(Deregowski, 1971). Recent developments in array processors for parallel execution of data, increased 
machine speed using reduced instruction set computers (RISC), and faster CPUs have removed the speed 
limitation of the 2D FFT. It can now be used as a tool for noise removal on systems ranging from 
mainframes to personal computers (PCs).

Only certain types of noise are suitable for treatment using the FFT method, in particular, 
stationary periodic noise that produces repetitive patterns in the image. Random noise, which appears 
as speckle patterns, or individual scanline dropouts, require specialized algorithms. Because the common 
sources of noise are power supplies, recording systems, and banks of detectors, most noise has a periodic 
component. The requirement that noise be stationary implies that repetitive noise is consistent throughout
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the image. Non-stationary noise (i.e., noise that varies in frequency throughout the image) is difficult 
to remove and linear filtering techniques are not generally effective.

In addition to noise removal, the 2D FFT method can also be applied to such diverse problems 
as enlargement, instrument response correction, image registration, and extraction of albedo and slope 
information. Image enlargement which employs extending the high frequencies by filling the transform 
to the required size using zeroes is the least biased of all enlargement methods and is particularly effective 
for high enlargement factors. The instrument response function can be derived by viewing an illuminated 
known target because the resulting response is the convolution of that function with the scene radiance. 
Geometric registration between images of comparable appearance can be done using cross correlation of 
image segments. (Because correlation and convolution can be expressed as multiplications in Fourier 
transform space they can be computed using the 2D FFT.) Albedo and slope information often appear 
to be associated with low and high frequencies respectively (Eliason et al., 1981) thus spatial filtering can 
be applied to examine or enhance this information.

One of the reasons that the 2D FFT method has been used infrequently in the remote sensing 
community has been it's complexity. This paper provides a comprehensive computer program to apply 
filters, examples of their use, and a simple introduction to the concepts of filtering in the frequency 
domain. Some caveats about the design of filters are provided including a method to avoid introduction 
of unacceptable artifacts. Examples of the use of the 2D FFT for image enlargement, geometric 
registration and extraction of spatial frequency information are presented to illustrate the general 
versatility of the method. Readers who wish to pursue the 2D FFT in greater detail are advised to 
consult the appropriate literature (Bracewell,1986; Clement, 1973; Gillespie, 1980; Oppenheim and 
Schafer, 1975).

Method
Because the purpose of this paper is to describe the application of 2D FFT filtering to images, 

it is necessary to distinguish among images, their transforms, and image representations of transforms 
henceforth referred to as spatial images, transforms, and frequency images. An image can be considered 
as a matrix of integer values. Let the spatial image I(j,k) be an integer array j=0,N-l; k=0,N-l. (A 
square image is used to keep the initial expressions simple. However, the filtering program is designed 
for rectangular images). Then the 2D Fourier transform (Pratt, 1978) can be mathematically defined in 
spatial frequency space (u,v) as:

.N-1N-1 2

The inverse transform is given by

T*HF **) />%\
r . (2)

v=0



Note that although the spatial image is a set of integers, its transform is both complex (i.e. consisting of 
a real and an imaginary part) and non-integer. (Because the real part is even and the imaginary part is 
odd this is referred to as conjugste symmetry.) In order to display the transform as a frequency image, 
an output form must be selected (i.e. modulus or amplitude, phase, real or imaginary part). The values 
are then rescaled (generally between 0-255) and truncated to integers for display. An image is filtered 
by computing the transform, applying a filter function to both the real and imaginary parts, forming the 
inverse transform, and then rounding to integers. In the filter program (Appendix A), a standard but 
well-known and versatile method is used for computing the 2D transform. It is the Cooley-Tukey Fast 
Fourier Transform that has been available in a number of forms for many years and is, thus, either 
commonly available (Press et al., 1986) or easily coded for any machine.

The program call is a single line in the filter program :
call fourt (data,nn,ndim,s,l,work)

where s=-l for the forward transform and +1 for the inverse transform. The image(s) are stored in 
common in a complex array called data. The remaining variables in the call statement are: nn, a two 
dimensional vector specifying the image size; ndim=2, the number of dimensions of the transform; and 
work, a work array. There is complete generality in the size of the image (subject to the computer 
memory) although the algorithm is fastest when the number of elements per line (pixels) and the number 
of lines are rich in prime numbers (Singleton, 1969). Use of images whose dimensions are powers of 
two is optimal when using the FFT algorithm (Singleton, 1967).

There are certain, well-known properties of the transform that are used in the filter program 
(linearity, symmetry, evenness). Proofs can be found in standard texts (e.g. Bracewell, 1986; Oppenheim 
and Schafer, 1975; Brigham, 1974) and are not presented here. Because of the additive properties of the 
transform, a pair of images can be filtered simultaneously by placing one image into the realpart and the 
other image into the imaginary part of the complex array data. The filtered pair are then extracted from 
the real and imaginary parts of the inverse of the filtered transform. (Although this result may sound 
counterintuitive to some readers it is a consequence of the conjugate symmetry mentioned previously. 
The real part of the transform of a real function is even and the imaginary part is an odd function, 
whereas the real part of the transform of an imaginary function is odd and the imaginary part is even. 
Thus the contributions of the two input images are in fact separable in the transform.) This property 
saves processing time when applying the same filters to multiband images such as the Thermal Infrared 
Multispectral Scanner (TIMS), the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), or the 
Landsat Thematic Mapper (TM).

The filter program (Appendix A) has been written to process a maximum of 6 images with each 
set of filters. Modification to a larger number (it is best to work with pairs) requires changing only the 
image management files. The disk input/output (i/o) controls follow the standards of the USGS image 
processing software REMAPP (Sawatzky, 1985) and its PC form (Livo, 1990). Implementation of this 
program with other image processing programs will require some understanding of the basic i/o calls that 
are required. The changes are not very substantial as the image(s) are input as a block, transformed, 
filtered, and output as a block. There is also an option to output a scaled image of the transform before 
or after filtering.

A transform can be displayed in two ways. The standard method is to display directly the 
output from the transform algorithm and that will be the method employed in this paper. In that case the 
dc term(zero frequency, average value of image) occurs at pixel 1, line 1 (fig. 1, left). (The folding or 
Nyquist frequencies of the transform are at the mid points of the pixel and line axes). There is another 
display method, called the optical transform, which interchanges the quadrants and places the dc term 
(and thus the center of the frequency coordinate axes) in the center of the image (fig. 1, right) thus 
making the form of the symmetry more obvious. The optical transform involves reshuffling the output 
from the 2D FFT and is unnecessary for filtering; therefore, it is primarily used only as an instructional



tool. Because an image consists of a set of positive integers (fig. 2A), then its transform is conjugate 
symmetric and the image of the transform (frequency image) is symmetric (fig. 2B). (The symmetry is 
more evident later in complex patterns such as tig. 2ID)

There are several aspects of the frequency image worth noting. The dc term or average value 
of the image appears as a spike in the transform. When the frequency image is re-scaled to enhance 
subtle features, the dc term is excluded from the scaling because its value is much greater than the rest 
of the transform and its inclusion would excessively compress rescaling of the remaining values. Instead 
the dc term is set to the maximum display value (generally 255). For display purposes, options are 
provided in the computer program (Appendix A) to output either the transform or the logftransform]. 
There are advantages to both options but generally the logftransform] is most useful for detecting noise. 
Because the transform is symmetric, filters are applied that are symmetric and the same filters are used 
for both the real and imaginary parts of the transform in order to avoid phase distortion.

An important concept of the Fourier transform (one sometimes described as a mathematical 
representation of the uncertainty principle called the similarity theorem) is that features which occupy only 
a limited part of the spatial domain are spread out in the frequency domain and vice-versa. Consequently 
a noise pattern that appears to be present throughout the spatial image will occupy a restricted area of the 
transform and can be isolated. A noise pattern that is present in only part of the spatial image will be 
spread out in the transform and difficult to isolate. This concept will be more evident in the examples. 
(A reassuring exercise is to use the filter program to demonstrate that the inverse transform of a 
transformed image generates the original image.)

The concept of transform pairs is embodied in the relationships between spatial image patterns 
and their frequency transforms, which can be viewed as equivalent.. In the following section, several 
examples of image transform pairs will be provided. The transform of noise patterns which can be 
identified in either the spatial image or the frequency image display can thus be determined.

Simple noise patterns
Coherent noise is generally quite evident in the image of the a transform because it is confined 

and thus appears anomalously bright. Consider a square image (N pixels, N lines) that consists of a 
single bright pixel at pixel P and Line L: an image impulse function (fig. 2A). The real part of its 
transform (fig. 2B) consists of a sinusoidal variation (somewhat like a corrugated roof). As the image 
and its transform are interchangeable then the transform of a sinusoidal spatial variation is an impulse in 
the frequency domain. The geometry of this relationship is shown on figure 3. The distance (D) between 
adjacent patterns (spatial periodicity) and the pattern slope (6) are illustrated for positive and negative 
slopes and the equations are provided below. The equations are provided below and the derivation is 
given in Appendix B).

Let W = N/D. Then
L = 1 + W cos0 ;
P = 1 + W sin0 if 0 ^ 0 and

= N-Wsin|0| if0 < 0. (3) 
In general for an N*M image

W = {Nsin|0| + Mco(0}/[D{sin|0| + cos0}].
These results can be used to examine some simple relationships involving the position of the 

impulse, the image size, and extension to line patterns (Table One). The mathematical derivation beyond 
the single point cases can be constructed using superposition (Appendix Two). The paired figures 
accompanying Table One show an image of the impulse function (described in the table) and the real part 
of its transform.



Table One. List of transform pair examples

Figure

4A,B

4C,D

5A,B

5C,D

6A,B

6C,D

6E,F

7A,B

7C,D

8A,B

8C,D

9A,B

9C,D

Image size

N

64

64

64

64

64

128

128

128

128

128

128

128

128

M

64

64

64

64

128

64

64

128

128

128

128

128

128

Pixels and lines of Impulse 
function

P

1

4

3

2

2

2

2

9

1

1*10

1*5

I

I

L

4

1

4

4

4

4

3

12

1+1*16

1*10

1*10

17

1+J*16

Range

1=0,7

1=1,12

1=1,25

1=1,128

I=1,128;J=0,7

Figure 4 shows how the position of the impulse function changes to produce horizontal or vertical 
patterns. An impulse on the vertical (line) axis (fig. 4A) causes a horizontal pattern in the transform (tig. 
4B). Conversely, from this result it can be seen that the transform of a horizontal scanline noise (Fig. 
4) will be clustered along the line (vertical) axis of the transform (fig. 4A). As the spike moves away 
from the axes of the figure (fig. 5A and 5C) the resulting transform pattern (fig. 5B and 5.D) is rotated 
by an angle (slope) that depends on the position of the impulse spike (equation 3). Figure 6 demonstrates 
that the size of the image affects both the spacing and orientation of the transform pattern. Conversely, 
this implies that the position of a noise spike in transform space will change as the size of the image being 
transformed is changed.



The variation in the position of the noise spike can be easily deduced from equation (3) using 
figure 3 as an illustration. Consider two images of different sizes (N^Mj) and (^NQ which contain 
the same pattern. Because 6 and D are the same then it follows that

(L! - lyWi = (M)/w2
and (PriyWj = (P2 -1)/W2 if 6 S> 0 
(Ni -PO/W! = (N2 - P2)AV2 if 0 < 0 (4)

where Wi/W2 = {Nj sin|0| +Mj cos0}/{N2 sin|0| +M2 cos0}.
(This result could also have been determined by proportionate scaling of the position of the noise spike.) 
In the example shown, figure 6, Nj=64, M!=128, N2 =128, M2 =64; Pi=2, Lj=4. To preserve the 
same pattern in figure 6B then from equation (3) tan0= 1/3 and from equation (4) WjAV2 = 1.4 and P2 ~1.7, 
L2 ~3.1. Because only integral pixel and line values can occur, the pattern is approximated by using a 
transform of an impulse at P=2, L=3. The result is shown in figure 6E and F. This result shows that 
the transform pattern is dependent on the image size. Often to save computer time it is desirable to work 
with image windows whose dimensions are powers of two. In many cases the images may not be so 
conveniently sized. After the noise has been identified using an optimum window size the noise must be 
removed from a different size image. It is thus important to recognize how the noise changes with 
changing image size.

Figure 7 illustrates the effects of periodicity. A single impulse (fig. 7A,B) has a corrugated 
(sinusoidal) transform whereas a periodic (harmonic) impulse pattern has a transform that appears as a 
periodic, sharply defined bright lines like a row of "walls". This transform is an illustration of the 
uncertainty principle concept mentioned in the previous section and can be visualized as a compression 
of the corrugated pattern in figure 7B. Conversely the corresponding transform of these patterns is 
"spread out" as represented in the change from single to periodic impulses (fig. 7A,C).

Figure 8 extends the previous results to an inclined harmonic pattern. Note that the pattern in 
figure 8C must wrap around as a consequence of the assumption that the image is periodic in both 
directions. This geometry can be visualized by regarding the image as a tile with the periodic pattern 
present in a mosaic of tiles. Figure 9 illustrates the transform relationships for line patterns and can be 
compared with the equivalent results for a point in figures 4A,B and 7C,D. The comparison illustrates 
two important concepts. It reiterates the uncertainty principle concept that as the pattern expands from 
a point to a line pattern (or a periodic point to a periodic line pattern) the resulting transform pattern is 
compressed. It can also be deduced (fig. 9C,D) that the periodic point and periodic line patterns are 
transform pairs (Appendix B). Scanline noise is a common problem in remote sensing images and this 
result shows that the transform of a horizontal line noise should appear as spikes along the line axis. The 
position of the noise along the transform axis (frequency) is dependent on the periodic spacing in the 
spatial image.

Filter design
Removal of noise from an image first requires identification of the noise either in the spatial 

image or the frequency image. Once the noise pattern is identified, the computer program (Appendix 
A) allows for three methods of noise suppression: blocking, smoothing, and interpolation. The blocking 
filter sets values of the transform to zero. The smoothing filter is an extension of the blocking filter and 
uses a rounding algorithm based on the sine function (Bracewell, 1986) to taper values at the edges of 
the filter. The interpolation filter uses values just beyond the edge of the noise and bilinearly interpolates 
across the noise pattern. This latter filter represents the least intrusive filter and is useful for testing 
whether a blocking or smoothing filter is necessary.

Selection of an appropriate filter is dependent upon the type of noise present. Several geometric 
filter shapes are provided for various types of noise patterns: point, full line, rectangular, periodic block,



wedge, angular harmonic, and "U-shaped". The "U-shaped" filter is a two dimensional filter can be 
visualized as a bathtub that has been cut in half across its width. It is used to reduce noise that clusters 
along either the line or pixel axis in the frequency domain. In addition a low and a high pass filter are 
provided for general image enhancement. Both these filters use a rapid roll off/on in the vicinity of a 
specified radius from the dc term. The low pass filter sets high frequency values beyond this radius to 
zero. The high pass filter reduces low frequency values inside the specified radius and increases high 
frequency values beyond it.

A brief discussion of the need for a smoothing filter is necessary. In some cases a blocking filter 
may causes artifacts (ringing) due to its sharpness. Based on our previous discussion of the uncertainty 
principle we expect that a filter which is narrowly confined in frequency space will have a transform that 
will be spread out in image space. Conversely if a filter is allowed to spread out smoothly then its 
transform will be more confined. A filter is applied to an image transform by multiplication in transform 
space. When the inverse transform is applied to recover the filtered image, the process is mathematically 
equivalent to convolving the original image with the inverse transform of the filter. If the transform of 
the filter is "spread out", then there is greater likelihood of producing undesirable artifacts. The 
smoothing filter represents a compromise between a blocking filter, which is sharply confined in the 
frequency domain, and a filter that occupies the entire transform space.

Application to noise removal in aircraft and satellite data
The most common noise problem in remote sensing images is scanline noise. A single channel 

of a commercial aircraft imaging spectrometer (GERIS) of an area near Cripple Creek, CO shows a 
periodic scan line noise (fig. 10A). The noise is evident on every fourth horizontal line and, using 
equation (3) (M=400, 0=0, D=4), we can compute the position of the transform of this noise at P= 1, 
L= 101. This can be seen as a spike in the transform image (fig. 10B). A point blocking filter was then 
applied and the results are shown (fig. 11A). There is some leakage of the noise beyond the spike as 
seen in the filtered image and so an extended filter was applied at L= 101 for 3 pixels on either side of 
the spike (i.e. P=l,4 and P=510,512). This filter (fig 11B) provides a satisfactory removal of the 
scanline noise.

Frequently noise that is not evident in the original image can be seen in derivative (specially 
processed) images. A TM satellite band ratio image (fig. 12A) of Bolivia exhibits periodic noise which 
appears as a series of bright spikes in the transform due to multiple harmonics (fig. 12C). A blocking, 
periodic box filter (together with some supplementary filters to be discussed later) was applied (fig. 12D). 
The transform appears black in those areas where the filter was applied and the filtered image shows 
considerable reduction in scanline noise (fig. 12B).

Often in aircraft data, the scanline noise is not substantially periodic. An example is shown using 
the second principle component of TIMS data from Iron Hill, CO (fig. 13A). The scanline noise appears 
in the transform as bright areas along the vertical edges(fig. 13C). The 'U-shaped' filter, which is useful 
in this case because the pattern is not entirely periodic, requires experimenting with the cutoff limits of 
the filter. A dark band along the vertical edges of the transform (fig. 13D) shows the location of the 
filter. The resulting filtered image (fig. 13B) can be compared with the original (fig. 13A) to see the 
improvement. (The difference between these two images is shown in figure 13E to illustrate the noise 
that was removed.)

Multiple noise patterns are commonly present. In some cases, this type of noise is evident in the 
transform as isolated bright spots or lines (e.g. fig. 13C) and in others the patterns appear to be repetitive 
(harmonic). A second principal component of TIMS aircraft data (fig. 14A,C), this time for Canon City, 
Colorado, shows a much more extensive noise pattern (fig. 14C) then in the Iron Hill example (fig. 
13A,C). For this image several blocking filters were employed including: U-shaped, full line and angular 
harmonic (see fig. 14D). The improvement in the filtered image is evident (fig. 14B). The filters can



be seen by comparing figure 14C with the dark areas in figure 14D. The 'U-shaped* filter, which is only 
one pixel wide, is barely noticeable and only in the upper left-hand corner. The full line filters appear 
as dark lines. The angular harmonic filter appears as a set of short vertical line segments starting in the 
lower left and (due to symmetry) upper right of the transform.

Sometimes, after the application of filters to more obvious transform noise patterns, a residual 
noise is revealed that was not initially evident. In the example images that follow (figs. 15-21), 6 panels 
labeled A through F are shown. The top panels A,B,and C are images and the bottom panels D,E, and 
F are their corresponding transforms. Panel A shows the starting image, panel B the filtered image and 
C the difference between A and B. To make comparisons easier, the results from a previous filtering 
step are repeated in the following illustration and an arrow is used to indicate the primary orientation of 
the noise pattern being filtered. Thus, panels A and D of figure 17 are identical to panels B and E of 
figure 16, and so forth.

A second principle component of TIMS aircraft data of De Weese Plateau, Colorado, is used to 
demonstrate multiple noise patterns that are superposed. The original image (fig. ISA) shows an intense 
scanline (horizontal) noise mat is present in the transform along the edge of the vertical axis (fig. 15D). 
This noise is reduced (fig. 15B) using a 'U-shaped* filter (fig. 15E and F) along the edge. The filtered 
transform (fig. 15E and 16D) shows a series of bright full line (vertical) noise patterns. Using this 
filtered transform as a guide, it is relatively easy to locate and apply full line blocking filters (fig. 16E 
and 16F). The noise removed (fig. 16C) involves quite complex patterns and is not apparent in a side-by- 
side comparison of the image (fig. 16A) and its filtered counterpart (fig. 16B). The primary shape in the 
removed noise pattern is a sinusoidal variation in the horizontal direction repeated 11 times and is, thus, 
associated with the noise removed by the full line blocking filter that was applied at pixels 11 and 12.

A harmonic pattern is also present in the transform (fig. 16D and E) and appears as a set of short 
bright vertical lines starting in the lower left of the transform and progressing diagonally upward. Only 
a few harmonics are evident in the figure but more detailed examination, using an interactive computer 
image display to enlarge the transform, shows that this pattern continues for 7 harmonics. The pixel and 
line value for the center position of each harmonic is determined by finding the local maximum in the 
transform. The angle and frequency of the harmonic pattern can be computed by least squares fitting the 
pixel and line values to a harmonic function and, for this example, the computed angle and frequency 
were determined to be 5.17° and 84.34, respectively. Using these values an angular harmonic filter was 
applied to remove the noise. The filter can be seen as a series of black line segments in the filtered 
transform (fig 17E), and as bright line segments in the transform difference image (fig 17F). Comparison 
of figures 17 A and B shows that the pattern removed by this filter is a high frequency diagonal line 
banding (fig. 17E).

The angular harmonic filter can be determined directly from the noise pattern using equation (3) 
and the parameters described in figure 3. The line banding noise in figure 17A can be estimated by 
measuring the angle (6 ~ -10°) and the spacing between the noise (D ~ 100). From equation (3), using 
N=512 and M=1024, then W can be computed as approximately 9.5 and thus P=510 and L=10. 
Because the noise pattern is more like a line than a corrugation (compare fig. 7B and 7D), there are 
higher frequency components present and, thus, a repetitive (harmonic) noise pattern can be observed in 
the transform. The noise should be of the form:

P ~ 512 - 9.isinlO° i= 1,2,3,.... 
L ~ 1 + 9.5icoslO°

and the resulting {P,L} harmonic pairs are {510,10}, {509,20}, {507,29}, {505,48}, ... This, in fact, 
appears to coincide with the noise pattern observed in the upper right hand corner of the transform (fig. 
17D). Because of the transform symmetry (see fig. 1, left) the symmetrical pair to {P,L] : {P',L'} is 
given by P'=N+2-P and L'=M+2-L. It follows then that the symmetrical equivalents of the harmonic 
pairs can be written as: {4,1016}, {5,1006}, {7,997}, {9,978}, ... and these correspond to the areas in
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the lower left hand corner of the transform (fig. 15D) that were first identified as the repetitive noise 
pattern.

Although we appear to have removed all the noise patterns evident in the transform as bright 
areas, the resulting image (fig. 17B and ISA) still shows a pronounced diagonal pattern (see arrow) of 
dark, irregular lines. Using the technique just described the characteristics of this pattern: 6 ~ 39° and D ~ 60 
can be used to compute the approximate location of the noise in transform space at P~9 and L~ 11. 
Examination of the transform on a video display monitor shows a bright line segment centered at pixel 
9, line 12 and extends from line 8 to 28 (not evident on figure 18D). A line segment blocking filter was 
applied (fig. 18E and F) and the resulting image (fig. 18B) and the companion difference image (fig. 
18C) show the removal of this noise pattern.

The image appears at this stage to be fairly noise free, but careful examination reveals additional 
noise components. A second harmonic noise pattern was identified close to the vertical axis of the 
transform and filtered (fig. 19). A low frequency horizontal banding was also identified and removed, 
together with several short line segments of noise that appeared to cause some high frequency noise 
subparallel to the scanlines (fig. 20C).

Figure 21 is a summary of the complete filtering process. Panels A, B and C show respectively 
the original image (same as figure ISA), the completely filtered image (same as figure 20B), and the 
removed noise. Panels D, E, and F are the respective transforms and the location of the various filters 
can be seen. This example illustrates the power of the 2D FFT for producing a usable image from one 
with considerable noise.

Filtering strategies
From the previous examples, it is possible to outline a general procedure for filtering images. 

Often noise is not apparent in the original images, but only in derivative products (e.g. ratios, principle 
components). Filters should be applied only to these derivative products rather than the original images 
from which they were constructed. Noise which is evident in the transform as bright line segments 
should be filtered first before determining if more subtle noise is present. Although the intent of a filter 
is to remove only noise, some signal is also removed (and in some cases distorted), consequently it is 
desirable to apply only the "minimum filter" necessary. How does one determine this minimum filter 
and what are the consequences of applying a filter that is too strong or too extensive?

There is a common answer to both questions. Examination of the filtered image together with 
the difference image can indicate what the filter is doing and whether it is necessary. Using the principle 
of the minimum necessary filter, it is possible to fine-tune both the type and extent of the filter. Thus 
a small blocking filter is more desirable than a large one (if the resulting image is satisfactorily filtered), 
but a blocking filter is less desirable (since it removes all signal and noise at that part of the transform) 
than a multiplicative (smoothing) filter, which only reduces the signal and noise.

There is a second and potentially more important aspect of the multiplicative filter. When 
examples of transforms of simple patterns were discussed, the concept of the uncertainty principle was 
invoked to explain that a narrowly confined pattern produced an extended transform pattern and vice 
versa. In the same fashion, if a filter has very sharp cutoffs (e.g. blocking filter), then its effect in the 
image domain is spread out (unconfined). For example, a very sharp high frequency filter can cause a 
ringing artifact throughout the image. Although in figure 18B we can see that an unwanted noise pattern 
(fig. 18B) is being removed without introducing obvious artifacts the example in figure 20B is not as 
convincing. An examination of the effects of a filter require careful examination using a high-resolution 
image display screen. Depending on the purposes to which the images are to be employed, there are 
cases when it would be better not to apply sharp cutoff filters because the ringing can lead to a spurious 
"structural grain" in the image.



One final but important, issue has not been discussed. Some images are very large and it is 
impractical to apply the FFT method to the entire image due to processing time, available memory, or 
both. Thus, it would be convenient to filter smaller parts of the image and then reassemble them. If 
information has been filtered out then it is conceivable that the parts will not match. An example is 
shown in figure 22 using TIMS data of the De Weese Plateau area, Colorado. The top and bottom halves 
of the image (fig. 22A) were filtered using the same 'U-shaped' filter and the results appended back 
together (fig. 22B). The filtered image segments no longer match along the join line. The problem can 
be reduced, however, by applying the filter to overlapping segments and deleting the overlap (fig. 22C).

Additional uses of the 2D FFT
The presence of high frequency spatial information in an image is necessary in order for it to 

appear in focus. The absence of high frequencies is generally why some images (e.g. gravity data) often 
look fuzzy at large scales, as can be illustrated by applying a low pass filter to SPOT data of an area 
south of the town of Texas Creek, Freemont County, Colorado (fig. 23). Although this filter can be used 
to remove high frequency noise or to examine the low frequency content of an image, it does reduce the 
image sharpness. Conversely, a high pass enhancement filter (which increases high frequencies relative 
to low) can be used to sharpen a fuzzy image. Great care must be taken not to overdo the high frequency 
enhancement as noise patterns will also be accentuated (fig. 24) and artifacts will be introduced due to 
high frequency ringing or aliasing (see Hunt, 1978 for an extensive discussion of image deblurring). In 
some cases, where no high frequency is present, a small amount of random noise introduced into the high 
frequency domain will, on transformation, appear to sharpen an image.

An additional use of the 2D FFT that might not be immediately obvious is enlarging images. The 
method is remarkably simple. The transform of an image is formed and enlarged to the desired 
expansion size by filling with zeroes at the high frequencies. The process can be visualized as follows. 
An augmented (enlarged) array of zero values is formed whose size matches the desired output image. 
The four quadrants of the transform of the original image (see the left hand side of figure 1) are then 
placed (added to) the four respective corners of the enlarged array. This results in zeroes being inserted 
at the high frequencies of the transform. The augmented image is then produced by inverting the 
transform. An example is shown (fig. 25) for an enlargement of part of a TM scene of the Canon City, 
Colorado area using enlargement factors of 5 and 25. Results using a pixel replication and a standard 
bilinear algorithm are shown for comparison. At a factor 5, enlargement the bilinear algorithm looks 
fuzzy compared with the replication and the FFT methods. The disadvantages of the replication algorithm 
are more evident at a factor 25 enlargement. The FFT method yields the most accurate enlargement 
possible because, unlike the other two methods, it is designed not to distort the scene high frequency 
content. In addition to uniform enlargement, the FFT method can also be used to enlarge differentially 
in the two orthogonal directions. One obvious limitation for large images is the required memory and 
processing time to form the transform and its inverse.

The current attention to Geographic Information Systems (GIS) has focussed greater interest on 
the use of co-registered images from different data sources. Manual processing is often tedious, however, 
requiring visual comparison between images and selection of many control points. If the images are quite 
different (e.g. thermal day and night or radar and reflectance), then automatic techniques are not directly 
feasible. If the images look similar (e.g. reflectance data from Landsat TM, SPOT and AVIRIS) or can 
be processed to look similar (radar and digital terrain), then cross-correlation can be used to determine 
the offsets. The 2D FFT provides a fast means to compute the cross-correlation.

The general approach can be outlined as follows. Because multiplication in the frequency domain 
is equivalent to convolution in the spatial domain, and because correlation and convolution are closely 
related mathematically, the FFT can be used to compute discrete cross-correlation of images. Two 
augmented images are formed: one containing the first image in its upper left hand corner and the other
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containing the second image in its lower right hand corner. Each augmented array is chosen large enough 
to contain both input images in the opposite corners without overlap. The augmented arrays are then 
transformed, and a product formed of the transform of the first array and the complex conjugate of the 
second transformed array. Lastly, the correlation is computed from the inverse transform of the product 
array. The relationship is most easily examined by considering the one-dimensional case (Brigham, p 
206, 1974) and extending that result to two dimensions.

The position of the maximum element in the correlation array provides the offset information and 
its value is a measure of the goodness of the correlation (and can be used as a weight in the registration). 
The algorithm can be applied to co-register two images by computing multiple correlations of smaller 
image segments and using these to determine a grid of control points.

Two satellite data sets (Landsat TM and SPOT) of an area near Canon City, Colorado are used 
to demonstrate the method (fig. 26). Because the SPOT data have a nominal resolution of 10m compared 
to the 30m resolution of the TM data, the SPOT data were first resampled every 3 pixels and lines. 
Fastest processing of the FFT algorithm occurs for image sizes that are powers of 2. For this example, 
64 pixel by 64 line image segments were used. The resampled SPOT image (fig. 26A) was used as the 
control image. The TM image (fig. 26B) was visually windowed to roughly correspond to the SPOT 
image. Black fiducial marks have been applied to all images to assist in the comparison (normally this 
is done interactively by switching images back and forth on the video screen).

The control points computed by the FFT correlation were determined on a regular grid and fitted 
to an affine transformation. This transformation was applied to produce a registered TM image (fig 26D) 
using a nearest neighbor algorithm. Although the solar illumination between the two data sets are not 
the same (they were acquired about 13 months apart), the automatic registration appears to be fairly 
satisfactory. The white fiducial marks most clearly illustrate the effectiveness of the registration.

General implementation of this algorithm for image registration will be most efficient if the 
offsets (and hence the size of the correlation windows) are small. This can be achieved by first using an 
affine transformation to remove rotations and then sampling the images and applying the method 
iteratively.

Another use of the 2D FFT is to separate aspects of the image that occupy different spatial 
frequency domains. Structural patterns that are expressed topographically, such as a dominant directional 
grain, have a distinct domain. Topography is often associated with higher spatial frequencies than albedo 
variations, suggesting that the transform might be useful for separating these properties. To illustrate this 
separation a simple filter was applied to a SPOT image of the Canon City area to separate the low and 
high frequency components (fig. 27). A narrow sine function was used in the decomposition to reduce 
the possibility of artifacts and the high frequency component (fig. 27C) was offset from zero by using 
the same dc term as in the original (fig. 27A) and the low frequency (fig. 27B) images. The 
decomposition is complete in that a sum of the low and high frequency images (the latter minus the dc 
term) yields the original image. As noted previously the low frequency (albedo component) looks fuzzy 
due to the lack of high frequencies.

Because discrete images can be represented by matrices, then vector and matrix algebra methods 
can be used directly to process the images (see Pratt, 1978, p!21-139). The 2D FFT is routinely used 
in potential field studies for such operations as reduction-to-the-pole, vertical derivatives, upward and 
downward continuation, pseudo-gravity transformation, and trend analysis (eg. Hildenbrand, 1983). 
Potential field data often have different characteristics than most aircraft and space images, being sampled 
on irregularly spaced grids and often displaying much longer correlation lengths. Application of the 
techniques discussed here to these data involve examination of issues not discussed in this paper (see 
Cordell and Grauch, 1982). Lastly, the 2D FFT can also be used for fractal analysis and to estimate the 
power spectrum of an image for roughness characterization.
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Summary
The 2D FFT method is a powerful image processing tool, which can now be implemented at all 

levels ranging from PCs and workstations to mainframes. The transform of an image provides an 
effective means to identify regular spatial patterns and its primary use is to remove periodic noise from 
digital images. Although the mathematical form of the transform is simple, many relationships are most 
easily illustrated by example. Using these results a general set of filters was developed and tested using 
a variety of noisy satellite and aircraft images. Based on these and other examples, a general strategy 
is proposed for filtering images: filter derived images (not the original images from which they are 
formed), remove obvious noise in the transform, and apply the "minimum filter" necessary.

The 2D FFT algorithm can also be used as a general purpose spatial analysis tool for images. 
Examples show its use to enlarge images (particularly for large enhancement factors), to perform 
automatic geometric registration of images, and to extract albedo and slope information. Other uses 
include instrument response correction, spatial pattern analysis (feature extraction, structural domains, 
etc.). These uses are particular to images.
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APPENDIX A. FftZd.filter progra*

input image(s)-> compute 20 FFT(s)
apply filters [optional output of filtered transform]
transform back -> output image(s)

The Cooley-Tukey fast fourier transform in usasi basic fortran
is used. The roots of the algorithm are somewhat ambiguous. It probably begins with an Algol program
(Singleton R. C., 1967, IEEE Audio Trans. v All-15, p 91-98) and was later modified by N. Brenner of c
Lincoln Labs and incorporated into the NCAR Library Routines (Adams, J. C. and Rotar, P., 1971, NCAR-c
TN/IA-67) 1967). Filter currently available are
lowpass, highpass, harmonic, angular wedge, rectangle, strip, point and btub.
The btub filter is called U-shaped in the text.This program uses Remapp routines and conventions.
These are described in a programmer's guide (Sawatzky, 1985) and
there is also a PC version (Livo, 1989).
The coordinate system for the 2DFFT is different from that of the
optical transform (e.g. see Hummer-Miller, 1990 Photo. Eng., v5, n1, p50). The
The dc term(zero frequency) is in the upper left corner (not the center) and the
symmetry is a little less obvious (see comment 3 following).

-> wx

spatial 
domain

fourier 
domain

v 
wy

DC --> wx -wx <--

-wy

wy IV

II

III
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IV
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I

Ix

Optical Transform

Current
i) up

input image settings are:
to 1024 pixel/scan lines and number of lines

such that lines*pixels <= 736*1200
ii) up to 6 input images with same set of filter(s)

N.B. To change image size you will need to modify:
1. all COMMON statements specifying data(both main program.

and appropriate subroutines)
2. the fp & fl arrays (main and subroutines)
3. the size test performed after reading in images.

The form of filter input

n

is

(number of filters to be applied)
opt1,i1, J1,k1,l1 (add O's as necessary to supply 5 values)
opt2,i2,j2,k2, 12

optn, in,jn,kn, In (il,j1 .... In are filter perameters)
Program currently handles up to 50 filters at one time. (Easily
modified ... see iopt,iarg in integer statement.)

Comments:

1. When more than one image is input, this program
forms pairs in the complex array "data1 for faster processing
- one in the real & the other in the imaginary pert

of data. Do NOT use peirs when computing just the
transforms ie. enter as single image cases.

2. The fortran 1D format is used i.e.
2D 1D

data(pixel,line) * data((line-1)*npix+pixel). where
npix - number of pixels/line.
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c 3. Transform symmetry:
c For pixel p and line I of an mpix by nlin transform
c data(kk)=data(k)
c
c where k=(l-1)*npix+p
c and kk=(l'-1)*npix+p'
c with p'=npix+2-p if p>1
c =1 if p=1
c l'=mlin+2-l if l>1
c =1 if 1=1
c
c 4. Filter types:
c - 3 general classes of filters:
c patch ..... interpolate across boundaries
c blocking .... set interior & edges to zeroes
c multiplicative.. * sine function to smooth
c
c - 9 types of filters: rectangle, btub, strip, point, angular
c wedge, lowpass, highpass, harmonic and periodic boxes.
c
c 5. A patch is constructed by interpolation of the transform
c from its boundary values. It is useful for reducing a
c noise spike but, unlike a blocking filter, does not
c create zeroes in the transform. The interpolation is
c bilinear with weights based on proximity.
c
c 6. Blocking sets all specified area including the boundary
c to zero. (Often this is the most effective way to
c remove noise.)
c
c 7. Multiplicative uses a sine function to generate a
c smooth roll off at the edges. (This is the best way
c to avoid filter artifacts.)
c
c 8. Filter parameters:(4 values;fill with zeroes as necessary)
c
c a. rectangle ... requires p1,p2;U,l2 the starting &
c ending pixels and lines.
c b. strip ... requires p1,p2 or 11,12 and applies to an entire
c line either vertical or horizontal.
c c. point ... requires p,I
c d. btub ... requires p,l.itub.
c There are 2 orientation options:along line(itub=1) or
c pixel axis(itub=0).
c This filter cuts off high frequencies on either the
c line frequency or pixel frequency axis and is shaped
c like a bathtub cut across its short dimension. The
c long axis of the bathtub is oriented along either
c coordinate axis, and p,I specify the closest corner of the
c bathtub.
c e. harmonic ... requires w,theta,nharm,dl
c to remove a periodic set of vertical noise spikes
c that appear en-echelon across the transform.
c where
c w is the periodic frequency of the pattern in pixel units;
c theta - the angle(deg) made by the en-echelon pattern;
c same measuring convention as for wedge
c nharm is the max number of harmonics;
c and dl is the half length (in pixel units) of the noise
c pattern in the line direction.
c integer scaling: w and theta scaled by factor 100
c If dl is assigned a negative value then the entire line
c is blocked.
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f. low and high pass   requires rhol the cutoff in pixel units. 
The high pass allows for an optional enhancement factor, 
entered as a X. A default value of 50X is used if this 
this parameter is entered as 0. To set it to 75X enter 75.

g. angular wedge ... requires theta,delt,rho1,rho2 
and blocks out a wedge in polar coord space, 
theta is measured clockwise(deg) from the line(vertical) 
axis. If the origin of the wedge in transform 
space is in the upper right corner [or by symmetry 
the lower left} the angle is +ve. 
The angular width of the wedge is delt(deg) and it is 
radially bounded between rhol and rho2..

integer scaling: factor 10 for all 4 parameters.

h. periodic boxes ... along line axis
... requires lstart,dl,halfwidth,number of boxes

9.

filter 
rectangular 
strip[line] 
strip[pixel] 
point
btub

wedge 
harmonic 
low pass 
high pass 
periodic box

Filter options table:

patch 
1 
3 
15 
4 
2

17

20

block
6
9 
14
8 

11

13

21

c
c
c
c
c
c
c
c
c
c
c N.B
c
c
c 10
c
c
c.....

output log(transform) of modulus 
output transform 
skip filtering

mult
7

10

16
18
12
19

-1
-2 
0

special

itub=1 (line axis) 
=0 (pixel axis)

..only use with i'2=0 

{to test i/o>

use i2=0 modulus(amplitude) 
=1 real 
=2 imaginary 
=3 phase 

ex. -2,1,0,0,0 will output the real part of the transform.
-1,0,0,0,0 » the log(modulus) « 

The filter option (-1 or -2) to output the transform MUST 
be the LAST filter option in the list in order to include 
the result of all filters in the output. 

When adding new filters to this program do NOT assume the 
transform symmetry (see #3). Apply filters to symmetrical 
pairs using symmetry function, (see subroutine symm)
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dimension nn(2),work(4000)
complex data
common data(883200)
integer iopt(50),iarg(50,4)
integer*2 array<1024),arrayl(1024)
integer fcbi(256,6),fcbo(256,6),jarg(4)
data ndim/2/,fcbi,fcbo/3072*0/ f jarg/4*0/ 

c
c ************ open i/o files **************** 
c

write(6 f *)'current version as of 5/8/91'
write(6 f *)'enter number[<7] of input image files)'
read(5 f *)ifileno
do 1 i=1 f ifileno
ik=i+6
call diskio(0 f ik,0 f fcbi(1 f i))
if(fcbi(1 , i).lt.0)calI exit(i)
npix=fcbi(2,1)
mlin=fcbi(3,1) 

c ..... image size test .......
if(npix*mlin.gt.883200)then

write(6f *)' incorrect input size: npix*mlin=' f npix*mlin
write(6,*)' max allowed size is 736*1200=883200'
stop
end if

nn(1)=npix
nn(2)=mlin
j=i+ifileno
Jk=J+6
fcbo(1,i)=8
fcbo(2,i)=npix
call diskio(0,jk,0,fcbo(1,i))

1 continue 
c
c ***************** cntcr filter parms ******* 
c
c to check i/o without filtering let nfilter=1 and use 0,0,0,0,0. 
c

write(6 f *)'enter number of filters'
read(5 f *)nfilter 

c write(6f *) 'number of filters is:' f nfilter
write(6f *)' enter filter option,arg1,arg2,...'
do 2 i=1 f nfilter
read(5 f *)iopt(i) f iarg(i f 1) f iarg(i f 2) f iarg(i f 3) f 

1 iarg(i,4)
2 continue

if(iopt(nfilter).lt.0.and.ifileno.gt.1)then
write(6f *)'It is NOT permitted to compute and output'
write(6 f *)'multiple transforms. Enter one at a time.'
write(6,*)'See comment #1 in program listing.'
stop
end if 

c
c **************** read in images ************ 
c

do 1000 ifile=1 f ifileno f 2
if(ifileno.gt.1)then

write(6 f *)'reading in file pair: ' f ifile f ' and ', jj
end if
if(ifileno.eq.1)write(6f *)'reading in file'
ifileo=ifile+ifileno
ifilek=ifile+6
do 7 j=1 f mlin
call di ski o(9, if ilek f arrayf fcbi(1,if ile))
call unpack(arrayf fcbi(1 f ifile))
jfile=ifile+1

18



jfilek=jfile+6 
jfileo=jfile+ifileno 
if(ifile.lt.ifileno)then 
call diskio(9,jfilek,array1,fcbi(1,jfile)) 
call unpack(array1,fcbi(1,jfile)) 
end if
do 10 i=1,npix 
k=(j-1)*npix+i 
if(ifile.lt.ifileno)then 
data(k)=cmplx(array(i),array!(i)) 
else
data(k)=cmplx(array(i),0.) 
end if

10 continue 
7 continue 

c
c *************** forward transform ************** 
c

write(6,*)'forming transform' 
call fourt(data,nn,ndim,-1,1,work) 

c 
c *************** apply filters ******************
c

write(6,*)'applying '.nfilter,' filter(s).'
iswitch=0

do 11 ifilter=1,nfilter 
ifopt=iopt(ifilter) 
ip1=iarg(ifilter,1) 
ip2=iarg(ifilter.2) 
il1=iarg(ifilter,3) 
H2=iarg<ifilter,4) 

if(ifopt.le.-1)iswitch-1 
c

if (ifopt.eq.20.or.ifopt.eq.21.or.ifopt.eq.22)then 
Istart=ip1 
idl=ip2 
ihalfwidth=iM 
nbox=il2
call periocfcox(lstart,idl,ihalfwidth,nbox,ifopt,npix,mlin) 

end if 
c

if (ifopt.eq.16)then 
theta=ip1*.1 
dthet=ip2*.1 
rho1=il1*.1 
rho2=il2*.1
call wedge(theta,dthet,rho1,rho2,npix,mlin) 

end if 
c

if(ifopt.eq.3.or.ifopt.eq.9.or.ifopt.eq.10.or. 
1 ifopt.eq.14.or.ifopt.eq.15)then

calI strip(ip1.ip2,i11,i12,ifopt,npix,ml in) 
end if 

c
if (ifopt.eq.13.or.ifopt.eq.17.or.ifopt.eq.18)then 
w=ip1*.01 
t=ip2*.01 
nhmax=iM 
ndl=il2
call harmonic(w,t,nhmax,ndl,ifopt,npix,mlin) 

end if 
c

if(ifopt.eq.12)call Iowpass(ip1,npix,mlin) 
c

if(ifopt.eq.19)then
factor=ip2*.01
if(factor.eq.0)factor=.5
call highpass(ip1,factor,npix,ml in)
end if
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if(ifopt.eq.1.or.ifopt.eq.6.or.ifopt.eq.7)call rectangle( 
1 ip1,ip2,il1,il2,ifopt,npix,mlin) 

c
if(ifopt.eq.2.or.ifopt.eq.5.or.ifopt.eq.1Deal I btub( 

1 ip1,ip2,il1,ifopt,npix,mlin) 
c

if(ifopt.eq.4.or.ifopt.eq.8)call point(ip1,ip2,ifopt, 
1 npix,mlin) 

c
11 continue 

c
if(iswitch.eq.1)then 
write(6,*)'forming re-scaled transform1 
zmin=1.EH 
zmax=-1.El1 
do 888 j=1,mlin 
do 888 i=1,npix 
k=<j-1)*npix+i

if(i.eq.1.and.j.eq.1.and.real(data(1)).gt.real(mlin*npix)) 
1 go to 888

if(ip1.eq.0>z=sqrt(real<data(k)>**2+aimag(data<k>>**2>
if(ip1.eq.1)z=real(data(k»
if(ip1.eq.2)z=aimag(data(k))
if(ip1.eq.3)z=atan2(real(data(k)),aimag(data(k)))
if(ifopt.eq.-1)then
if(z.lt.0.)then
write(6,*)'You are trying to compute the log of a -ve #'
write(6,*)'Either you are performing an illegal option'
write(6,*)'or this program needs to be checked. SEE '
write(6,*)'Ken Watson for further details.'
write(6,*)'This program has now terminated.'
stop
end if

if(z.eq.0.)then 
z=-alog(2.) 

else
z=alog(z) 

end if 
end if 

c when the dc term is too large ..... reset
if((ip1.eq.0).and.(i.eq.1).and.(j.eq.1))goto 888 
zmin=amin1(zmin,z) 
zmax=amax1(zmax,z) 

888 continue
if(zmin.eq.zmax)then
write(6,*)'zmin.eq.zmax .... no stretch possible... paused.' 
pause 
end if
a=255./(zmax-zmin) 
b=-a*zmin 
do 889 j=1,mlin 
do 890 i=1,npix 
k=(j-1)*npix+i
if(ip1.eq.0>z=sqrt(real(data(k»**2+aimag(data(k)>**2> 
if(ip1.eq.1)z=real(data(k)) 
if(ip1.eq.2>z=aimag(data(k»
if(ip1.eq.3)z=atan2(real(data(k)),aimag(data(k))) 
if(ifopt.eq.-1)then 
if(z.eq.0.)then 
z=-alog(2.) 
else
z=alog(z) 
end if 

end if
array!(i)=anint(a*z+b) 
i f(arrayl(i).It.0)array1(i)=0 
if(array1(i).gt.255)array1(i)=255 

890 continue
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call pack(array1,fcbo(1,ifile)) 
ifileok=ifileo+6
call diskio(10,ifileok,array1,fcbo(1,ifile)) 

889 continue
write(6,*)'closing files.' 
ifilek=ifile+6 
ifileok=ifileo+6
call diskio(6,ifilek,0,fcbi(1,ifile)) 
call diskio(6,ifileok,0,fcbo(1,ifile)) 
if(ifile.lt.ifileno)then 
jfilek=jfile+6 
jfileok=jfileo+6
call diskio(6,jfilek,0,fcbi(1,jfile)) 
call diskio(6,jfileok,0,fcbo(1,jfile)) 
end if 
go to 1000 

end if 
c

Hrite(6,*)'forming inverse transform' 
call fourt(data,nn,ndim,+1,1,work) 

c
write(6,*)'output filtered images' 
do 300 j=1,mlin 
do 301 i=1,npix 
k=(j-1)*npix+i
data(k)=data(k)/(rm(1)*nn(2)) 
arrayl(i)=anint(aimag(data(k))) 
if(array!<i).gt.255)array1(i)=255 
if(arrayl<i).It.0)array1(i)=0 
array(i)=anint(real(data(k))) 
if(array(i).gt.255)array(i)=255 
if(array(i).lt.0)array(i)=0 

301 continue
if(ifile.lt.ifileno)then 
call pack(array1,fcbo(1,jfile)) 
jfileok=jfileo+6
call diskio(10,jfileok,arrayl,fcbo(1,jfHe)) 

end if
call pack(array,fcbo(1,ifile)) 
ifileok=ifileo+6

300 call diskio(10,ifileok,array,fcbo(1,ifile» 
c 
c *************** close files *******************
c

write(6,*)'closing files.'
ifilek=ifile+6
ifileok=ifileo+6
call diskio(6,ifilek,0,fcbi(1,ifile))
call diskio(6,ifileok,0,fcbo(1,ifile))
if(ifile.lt.ifileno)then
jfilek=jfile+6
jfileok=jfileo+6
call diskio(6,jfilek,0,fcbi(1,jfile))
call diskio(6,jfileok,0,fcbo(1,jfile))
end if 

1000 continue
write(6,*)'finished.' 
end
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c
c ********************************************
c
c SUBROUTINES
c
c ********************************************
c

subroutine halfsinc(i1,i2 f f) 
c this is a rapid rolloff filter between i1 and i1+3

dimension f(1200)
data beta/.821534976379/ t gamma/4.49340945791/ 

c note f(x)=1~beta+beta*sin(x*gamma)/(x*gafnma) 
c f(0)=1 
c f(1)=0 
c df/dx = 0 at x=1 
c
c x=(i-i1)/(i2-i1) if i2<i1+4 
c =(i-i1>/4 if i2>i1+3 
c i=i1,i2 
c

do 8000 k= 1,2000 
8000 f(k)=0.

f(i2)=0.
do 2 i=1.i1 

2 f(i)=1
do 1 i=i1+1.i1+3
if(i2.gt.il+3)then
x=float(i-i1)/4.
else
x=f loat( i - i 1 )/f loat( i2- i 1 )
end if
f(i)=0.
if (x. lt.1 . )f (i)=1 .-beta+beta*sin(ganroa*x)/(ganfina*x) 

1 continue
return
end 

c
subroutine smooth(i1 f npix f f) 

c this is a gradual rolloff filter
dimension f(1200)
data beta/.821534976379/,gamma/4.49340945791/
i2=npix/2+1

f(i2)=0.
do 1 i=i1+1.i2-1
x=float(i-i1)/float(i2-i1)
f ( i )=1 . -beta+beta*sin(gamma*x)/(gamma*x)
continue
return
end

subroutine symmd'pix.ilin.npix.mlin.kout)
to compute symmetry point and return value in 10 parameter kout. 
ip1=npix+2-ipix 
if(ipix.eq.1)ip1=1

kout=(il1-1)*npix+ip1
return
end
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subroutine periodbox(lstart,idl,ihalfHidth,nbox,ifopt,npix,mlin) 
c to filter periodic boxes along line axis 
c N.B. nbox refers to number in first quadrant only 
c symmetry will take care of the rest 
c 
c options: = 20 patch; =21 blocking

complex data
common data (883200)
write(6,*)'entering periodbox.'
do 100 kbox=1,nbox
lo=lstart+(kbox-1)*idl
if(ifopt.eq.21.)then
do 101 ip=-ihalfwidth+1,ihalfwidth+1
ipix=ip
i f ( i p. 1 1 . 1 ) i pi x=npi x+i p
do 102 il=lo-ihalfwidth+1,lo+ihalfwidth+1

k=(ilin-1)*npix+ipix 
call symmd'pix, ilin l npix l mlin l ksymm) 
data(k)=0. 
data(ksymm)-0. 

102 continue 
101 continue

end if
100 continue 

return 
end 

c
subroutine rectangle(ip1 l ip2 l il1, il2,ifopt l npix l mlin) 

c to filter rectangular areas 
c options: = 1 patch, =6 blocking, =7 mult 

complex data 
common data(883200) 
dimension fp(1200),f 1(1200) 

dp=ip2-ip1 
if(ifopt.ne.6)then
if(il1.ge.(il2-1).or.ip1.ge.(ip2-1))then 
write(6,*)'bounding error at rectangular interp' 
wri te(6,*) ' i 11 , i 12: ' , i 1 1 , i 12 
write(6,*)'ip1,ip2:',ip1,ip2 
stop 

end if 
end if

if (ifopt.eq.7)then 
imidl=int(float(il2+il1)/2.) 
imidp=int(f loat< ip2+ip1 )/2. ) 
call halfsinc(ip1,imidp,fp) 
do 666 i=imidp+1,ip2
j=ip1+ip2-i 

666 fp(i)=fp(j)
call halfsinc(il1,imidl,fl) 
do 667 i=imidl+1,il2

667 fl(i)=fl(j) 
end if

..... rout i ne ..... 
do 12 ilin=il1,il2 
do 12 ipix=ip1,ip2 
if ( if opt. ne. 6) then 
c1=f loat( ipix- ip1 )/dp 
c2=f loat( ip2- ipix)/dp 
end if
k=(i lin-1)*npix+ipix 
k1=(ilin-1)*npix+ip2 
k2=(ilin-1)*npix+ip1 
call symm(ipix,ilin,npix,mlin,kout)
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call symm(ip2,ilin,npix,mlin,k1out) 
call symm(ip1,ilin f npix,mlin,k2out) 
if(ifopt.eq.1)then 
data(k)=c1*data(k1>+c2*data<k2> 
data(kout)=c1*data<k1out>+c2*data<k2out) 
end if
if(ifopt.eq.6)then 
data(k)=0. 
data<kout)=0. 
end if

if(ifopt.eq.7)then
factor=fp(ipix)+fl(ilin)-fp<ipix)*fl(ilin) 
data(k)=factor*data(k) 
data(kout)=factor*data<kout) 
end if

12 continue 
return 
end 

c
subroutine uedge(theta,dthet,rho1,rho2,npix f mlin) 

c to filter wedge shaped areas ie bounded in theta & r 
complex data 
common data(883200) 
iswitch=0
if (theta.lt.O.) iswitch=1 
theta=abs(theta)
ip1=int(rho1*sind(theta-dthet*.5)) 
ip2=int(rho2*sind(theta+dthet*.5»+1 
if (isuitch.eq.Dthen 
ip1a=npix+1-ip1 
ip1=npix+1-ip2 
ip2-ip1a 
end if
iI1=int<rho!*cosd(theta+dthet*.5)) 
il2=int(rho2*cosd(theta-dthet*.5»+1 
do 1849 ip=ip1,ip2 
do 1849 il=il1,H2
if(iswitch.eq.0)rho=sqrt«ip-1.)**2+(il-1.)**2) 
if(iswitch.eq.1)rho=sqrt«npix-ip)**2+(il-1.)**2) 
if((rho.lt.rho1).or.(rho.gt.rho2»goto 1849 
if(iswitch.eq.0>phi=atand«ip-1.)/<il-1.» 
if<iswitch.eq.1>phi=atand«npix-ip)/<il-1.» 
if((phi.lt.theta-dthet*.5).or.(pM.gt.theta+dthet*.5>> 

1 goto 1849
data((il-1)*npix+ip)=0. 
call symmd'p,il,npix,mlin,ksymm) 
data(ksymm)=0. 

1849 continue 
return 
end 

c
subroutine harmonic(w,t,nhmax f ndl,ifopt f npix f mlin) 

c periodic angular 
c enter w,t,nhmax,ndl
c where w is the angular period in pixel units 
c t is the angle in degrees 
c +ve if pattern starts at origin 
c -ve if it starts at p=1,l=mlin 
c nhmax is the max no of harmonics to filter 
c ndl the half line length of the petch filter 
c ndl<0 employ a full line block at harmonic 

complex data
common data(883200),fp(1200),f1(1200) 
integer pn 
iline=nhmax 
nhmax=abs(nhmax) 
ntest=ndl 
ndl=abs(ndl) 
sint=sind(abs(t))
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cost=cosd(t)
do 1999 nh=1,nhmax

ln=1+mod(int(w*nh*cost+.5) f mlin)
if(t.ge.0.)then 

pn=1 +mod( i nt ( w*nh*s i nt+ . 5 ) f npi x )
else
pn=npix-mod(int(w*nh*sint+.5) f npix)
end if

if(ifopt.eq.18)then 
call halfsinc(pn-4 f pn,fp) 
do 1997 i=1,4 

1997 fp(pn+i)=fp(pn-i)
call halfsinc(ln-50,ln,fl) 
do 1996 j=-ndl,ndl

1996 fl(ln+j)=fl(ln-j) 
end if 
do 1998 il=ln-ndl,ln+ndl

k=(il-1)*npix+pn
call symmCpn, il f npix f mlinf ksyirm) 
if(ifopt.eq.17)then 

c apply patch
data(k-1)=(2*data(k-2)+data(k+2))/3.
data(ksyirm- 1 )=(2*data(ksyirm-2)+data(ksyiniH-2) )/3.
data(k+1)=(data(k-2)+2*data(k+2))/3.
data(ksymiH-1 )=(data(ksymm-2)+2*data(ksymiH-2) )/3.
data(k)=(data(k-2)+data(k+2))/2.
data(ksyirm)=(data(ksynn-2)+data(ksyiniH-2))/2. 
end if
if(ifopt.eq.13)then 

c apply block
data(k-1)=0.
data(ksyirm-1)=0.
data(k+1)=0.
data(ksynnH-1)=0.
data(k)=0.
data(ksyirm)-0. 
end if
if(ifopt.eq.18)then 

c apply mult
kp=(mlin+1)*npix+2-k
f actor=f p( i p)+f I ( i I ) - f p( i p)*f I ( i I )
data(k)=factor*data(k) 

c write(6 f *)'nh f p f l f factor: ' f nh f ipf il f factor
data(kp)=factor*data(kp) 

end if 
1998 continue

if(ntest.lt.0)then 
c full line block

idl=int(mlin/2) 
c 2/3 line block

if(iline.lt.O)idl=int(2*idl/3)
do 3345 il=ln-idl,ln+idl

k=(il-1)*npix+pn
call syirm(pnf il f npix f mlinf ksyirm)
data(k)=0.
data(ksyirm)=0. 

3345 continue
end if 

1999 continue
return
end
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subroutine pointd'p, i I, ifopt,npix, ml in) 
c option = 4,8 patch, block 
c

complex data, sum 
common data (883200) 
kk=(il-1)*npix+ip 
call symmdp, il,npix,mlin,kkout) 
sum=cmplx(0.,0.) 
sumout=cmplx(0. ,0. ) 
count=0
do 3000 ipix=maxOdp-1,1),ip+1 
do 3000 ilin*maxOdl-1,1),il+1 
ifd'pix.eq.ip.and.ilin.eq.iDgo to 3000 
count=count+1 
k=(ilin-1)*npix+ipix 
call symm(ipix,ilin,npix,mlin,kout) 
sum=sum+data(k) 
sumoutssumout+data ( kout ) 

3000 continue
if(ifopt.eq.4)then 
data(kk)=sum/count 
data(kkout)=sumout/count 
else
data(kk)=0. 
data(kkout)=0. 
end if 
return 
end 

c
subroutine Iowpass(ip1,npix,mlin) 

complex data 
common data(883200) 
dimension fp(1200)

call halfsincdp1,ip1+5,fp) 
c call smooth(ip1,npix,fp) 

ii1=int(npix/2)+1 
jj1=int(mlin/2)+1 
do 1444 i=1,ii1 
do 1444 j=1,jj1

r=(sqrt((float(i)/npix)**2+(float(j)/mlin)**2))*npix 
if(int(r).lt.ip1)go to 1444 
k=(j-1)*npix+i 
i1=npix+2-i

j1=mlin+2-j

k1=(j-1)*npix+i1 
k2=(j1-1)*npix+i1 
k3=(j1-1)*npix+i 
if(int(r).lt.ip1+5)then 
factor=fp(int(r)) 
data(k)=data(k)*factor 
data(k1 )=data(k1 )*f actor 
data(k2)=data(k2)*factor 
data(k3)=data(k3)*f actor 
else
data(k)=0. 
data(k1)=0. 
data(k2)=0. 
data(k3)=0. 
end if

1444 continue 
return 
end
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subroutine highpass(ip1,enh_factor,npix,mlin) 
complex data 
common data(883200) 
dimension fp(1200)

call halfsinc(ip1,ip1+5,fp) 
ii1=int(npix/2)+1 
jj1*int(mlin/2)+1 
do 2444 i=1,ii1 
do 2444 j»1 f jjl

r=(sqrt((float(i-1)/npix)**2+(float(j-1)/mlin)**2))*npix 
if(int(r).lt.ip1)go to 2444 
k*(j-1)*npix+i 
i1=npix+2-i

j1=mlin+2-j

k1=(j-1)*npix+i1 
k2=(j1-1)*npix+i1 
k3=<j1-1)*npix+i
factor=1+enh factor*(1-fp(int(r))) 
data(k)=data?k)*f actor 
data(k1 )=data(k1 )*f actor 
data(k2)=data(k2)*f actor 
data(k3)=data(k3)*f actor 

2444 continue 
return 
end 

c
subroutine btub( ip1 , i 11 , i tub, ifopt.npix, ml in) 

c option = 2 patch, 5 mult , 11 block 
c itub=1 line axis; =0 pixel axis 

complex data 
common da ta( 883200) 
dimension fp(1200),f 1(1200) 

il2=int(mlin/2.+1) 
ip2=int(npix/2.+1) 
if(ifopt.eq.5)then

c mult filter line axis 
if(itub.eq.1)then 
ixx=ip1-4 
if(ixx.lt.0)ixx=1 
call halfsinc(ixx,ip1,fp) 
do 668 i=1,ip1

668 fp(i)=1-fp(i)
call halfsinc(il1 f il2,fl) 
else

c mult filter pixel axis 
call halfsinc(1,il1,fl) 
do 669 i=1,iM

669 fl(i)=1-fl(i>
call halfsinc(ip1,ip2,fp) 
end if 
end if
if(itub.eq.1)then

c line axis 
do 13 ilin=il1+1,il2

ilin1=mlin+2-ilin

do 13 ipix=1,ip1-1
ipix1=npix+2-ipix
if(ipix.eq.1)ipix1=1
k=(ilin-1)*npix+ipix
ka=( i I in-1 )*npix+ipix1
call synm( ipix.il in, npix, ml in, kb)
call symm( ipixl.il in, npix, ml in, kc) 
if(ifopt.eq.5.or.ifopt.eq.11)then 
if(ifopt.eq.5)factor=fp(ipix)+fl(ilin)-fp(ipix)*
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1 fl(ilin)
if(ifopt.eq.11)factor=0.
data(k)=factor*data(k)
data(ka)=factor*data(ka)
data( kb)=f actor*data( kb)
data(kc)=factor*data(kc)
go to 13
end if

patch filter (still line axis) 
u3=ip1-ipix 
d=u2*u3+u1 *u3+u1 *u2 
w1=u2*u3/d 
«2=u1*u3/d 
w3=u1*u2/d 
k1=(il1-1)*npix+ipix 
k2=(mlin+2-il1-1)*npix+ipix 
k3=( i I in- 1 )*npix+ip1 
k3a=( i I in1 - 1 )*npix+ip1 
call symm(ipix,il1,npix f mlin,k1out) 
cal I symm( ipix, ml in+2- i 11 , npix, ml in, kZout ) 
call symm(ip1,ilin,npix,mlin,k3out) 
cal I symm( ip1 , i I in1 , npix, ml in,k3aout) 
data(k)=Hl*data<k1)+w2*data(k2)-m3*data<k3) 
data(kout)=w1*data(k1out)+w2*data(k2out)+ 

1 w3*data(k3out)
data( ka )=w1 *data< k2 )+w2*data( k1 )+w3*data( k3a) 
data( kaout )=w1 *data( kZout )+w2*data( k1 out )+w3* 

1 data(k3aout) 
13 continue 

else
pixel axis

do 33 ipix=ip1+1,ip2 
u1=ipix-ip1 
u2=(npix-ip1+1)-ipix 
ipix1=npix+2-ipix 
if(ipix.eq.1)ipix1=1 
do 33 ilin=1,il1-1 
ilin1=mlin+2-ilin

k=( i I in- 1 )*npix+ipix 
ka=( i I i n1 - 1 )*npi x+ ipix 
kb=( i I in-1 )*npix+ipix1 
kc=( i Iin1-1 )*npix+ipix1 
call synm(ipix,ilin,npix,mlin,kout) 
cal I symm( ipix, i I in1 , npix, ml in, kaout) 
call synm(ipix1,ilin,npix,mlin,kbout) 
cal I symm( ipixl , i I in1 , npix, ml in, kcout) 
if(ifopt.eq.5.or.ifopt.eq.11)then

if(ifopt.eq.5)factor=fp(ipix)+fl(ilin)-fp(ipix)*f1(ilin) 
if(ifopt.eq.11)factor=0.
data( k)=f actor*data( k)
data( kout )=f actor*data( kout )
data(ka)=factor*data(ka)
data( kaout )=f actor*data( kaout )
data(kb)=factor*data(kb)
data( kbout )=f actor*data(kbout )
data(kc)=factor*data(kc)
data( kcout )=f actor*data( kcout )
go to 33 

end if 
u3=il1-ilin 
d=u2*u3+u1 *u3+u1 *u2 
w1=u2*u3/d 
w2=u1*u3/d 
M3=u1*u2/d 
k1=(ilin-1)*npix+ip1 
k2=( i I in-1 )*npix+npix+2- ip1 
k3=(il1-1)*npix+ipix 
k3a=(ml i n+2- i 1 1 - 1 )*npix+ipix
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cal I symn( ip1 , i I in, npix,ml in, klout) 
cal I symm(npix+2- ip1 , i I in,npix,ml in,k2out) 
call symm(ipix,il1,npix,mlin,k3out) 
call symm(ipix,mlin+2-il1,npix,mlin,k3aout) 
data(k)=w1*data(k1)+w2*data(k2)+w3*data(k3) 
data( kout )=w1*data< k1 out )+w2*data< k2out )+w 

1 3*data(k3out)
data<ka)=w1*data<k2)+w2*data<k1)+w3*clata<k3a) 
data< kaout )=w1*data< k2out )+w2*data< k1 out )+w 

1 3*data(k3aout) 
33 continue 

end if 
return 
end
subroutine strip( ip1 , ip2, i 11 , i 12, if opt,npix,ml in) 

complex data 
common data (883200) 
dimension fp(1200)

horizontal strip [pixel] option 14,15 
if(ifopt.eq.14.or.ifopt.eq.15)then 
I1=ip1 
I2=ip2
do 1789 ip=1,npix 
do 1789 i 1=1 1,12 
k=(il-1)*npix+ip 
k1=k+(U-il-1)*npix 
k2=k+(l2-il-1)*npix 
call symm(ip,il,npix,mlin,ksymm) 
call symm(ip,U-1,npix,mlin,ks1) 
call svmmO'p, l2+1,npix,mlin,ks2)

if(ifopt.eq.14)data(k)=0.
if(ifopt.eq.15)data(k)=data(k1)-t-(data(k2)-data(k1))*z 
if(ifopt.eq.15)data(ksyimi)=data(ks1)-t-(data(ks2) 

1 -data(ks1))*z
if(ifopt.eq.14)data(ksymn)=0. 

1789 continue
end if 

c option = 3,9,10 vertical strip:patch, block, mult
if«ifopt.eq.3).or.(ifopt.eq.9) 

1.or.(ifopt.eq.10))then
if((ip1.eq.ip2).and.ifopt.ne.9)then 
ip1=ip1-1 
ip2=ip2+1 
end if
if(ip1.gt.ip2)then
write(6,*)'strip interp error, ip1.gt.ip2' 
wri te<6,*) ' ip1 , ip2: ' , ip1 , ip2 
stop 
end if 
dp=ip2-ip1 
if(ifopt.eq.10)then 
imidp=int(float(ip2+ip1)/2.) 
call halfsinc(ip1,imidp,fp) 
do 766 i=imidp+1 f ip2
j=ip1+ip2-i 

766 fp(i)=fp(j) 
end if
do 114 ilin=1,mlin 
ilin1=mlin+2-ilin

k1=(ilin-1)*npix+ip1
k2=< i I in- 1 )*npix+ip2
call symn(ip1,ilin,npix,mlin,k1out)
cal I symm( ip2, i I in,npix,ml in,k2out)
do 114 ipix=ip1,ip2
c1=0
c2=0
if(ifopt.ne.9)then
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c1=float(ip2-ipix)/dp 
c2=float<ipix-ip1)/dp 
end if
k=(iIin-1)*npix+ipix 
call symn(ipix,ilin,npix,mlin,kout) 
if(ifopt.eq.3)then 
data(k)=c1*data(k1>+c2*data<k2> 
data<kout)=c1*data<k1out)+c2*data<k2out> 
end if
if(ifopt.eq.10)then 
data(k)=fp(ipix)*data(k) 
data(kout)=fp(ipix)*data(kout) 
end if
if(ifopt.eq.9)then 
data(k)=0 
data(kout)=0 
end if

114 continue 
end if 

return 
end
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APPENDIX B. 2D FFT of some fundamental patterns 
Image impulse.

Define an image impulse (see figure 2A) at pixel j' (measured horizontally from the left edge) 
and at line k' (measured vertically from the top edge) :

where A (p-p')=\ p=p' (3) 
=0 otherwise.

Then its transform in u,v space (where u is parallel to j and v is parallel to k) is given by

^j-e'^^, (4) 

and the real part of the transform is

1 9ir
(5)

This is a sinusoidal pattern (see figure 2B) of dark and light bands. The distance between adjacent 
bands, and the slope of the line passing though one of the bands is easily determined from the 
parametric equation

 (uj'+vk') = constant + 2nl I = 0, 1, 2...

v 
where D =    -    and 0 = tan^-fc'//).

Periodic pattern of impulses along edge.
Consider an equally spaced set of impulse functions, separated by a distance a, along the left 

hand edge of an image (see figure 7C). Then

/(o) = A(/).A(*-,so) 5=0, 1, 2.., N/a-l (7) 

and its transform is

. ., .
. / . 1 V « N - ^° tf V= mteger x
" M r N L 0 if v* integer x

This is a series of parallel lines (see figure 7D) with spacing N/a.
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Image "line".
If we define an image "line" as a contiguous array of image impulses across the image (see 

figure 9A) then a line at k=k' is given by

!(*') = A(*-*').A(/-s) where s = 0, 1, 2..., N-l (9) 

and the transform is

L = - T
(10)

The real part is given by,

(11)

which is a sinusoidal pattern along the vertical axis (see figure 9B).

Periodic line pattern.
For a periodic line pattern (see figure 9C)

P(o) = A(*-ro).A(/-,s) where r = 0, 1..., r ; s = 0, 1,.., N-l. <12)

The transform is

r-0 j-0

F -  vrc
*

r-0

A(w).(F+l) if v=integer x N/a 
A(w) if v?tinteger x 7V/0.

This result we recognize as a series of impulses along the v axis (figure 9D) with spacing N/a. Thus 
axial periodic points with spacing (D) transform to periodic lines with spacing (N/D) , which in turn 
transform to axial periodic points with spacing (D). This shows that the periodic line pattern and the 
axial periodic impulse pattern are transform pairs (figures 1C &D; 9C & D).
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Evenly spaced point pattern.
An evenly spaced pattern of points (figure 8 A & C) can be expressed as

H(/f,6)   &(j-hHcos0).&(k-hHsw0) where h = 1, 2, .... (14)

and the transform is

-<t~ "~ -* (15)

where H is the distance between the points and 6 is the angle(slope) of the point pattern. By analogy 
with the previous results for the impulse and the periodic line pattern this result can be identified as a 
set of lines with slope angle 8 and distance between lines N/H (see figures 8B & D).
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Fig. 1 - Comparison between the FFT 2D transform Ceft) and the optical transform (right). The dc 
term(zero frequency) is the single bright pixel (upper left for the Fourier transform, center for the optical 
transform). Quadrant numbers are provided to show which quadrants correlate in the two transform 

displays.

Fig. 2 - An image of a simple impulse (A) and the frequency image of its transfonn(B).
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Fig. 4 - Image and transform pairs for an impulse on the line (A) and the pixel (C) axis. Note that the 

transform of a horizontal pattern(B) lies on the vertical(Iine) axis(A) and vice versa(D and C).



Fig. 5 - Image and transform pairs for an off axis impulse. Note that the angle of the transform pattern 

changes with the slope of the line drawn from the origin to the impulse.



Fig. 6 - Image and transform pairs for different size images. Note that although the impulse is in the 

same location in images A and C the pattern of the transform changes because the image size has 

changed. In E the position of the impulse was changed to yield a transform pattern in F similar to that 

in B. The pattern is not identical due to integer arithmetic (see text).



Fig. 7 - The upper panels (A, B) show an image transform pair for a single impulse. The bottom panels 
(C, D) show the image transform pairs for a periodic impulse along the vertical (line) axis. Note that 
the single impulse has a corrugated transform pattern, whereas the periodic impulse has a linear transform 
pattern of high(bright) values like rows of "walls".



Fig. 8 - The results shown in the figure 7 (C,D) are generalized for an inclined periodic impulse pattern. The rotation 
of the transform pattern is related to the angle(slope) of the line of the periodic impulses. Note that in panel C the 
periodicity of the function results in a wrapping around from the bottom of the image to the top. This implies that the 
transform of a noise pattern similar to panel D will exhibit the same wrap around shown in C if enough harmonics are 

present.



Fig. 9 - A line in image space is just a collection of adjacent impulses. The upper panels (A, B) show the transform of a 
single horizontal line. Note that the corrugated pattern occurs only along the vertical axis of the transform. The bottom panels 
(C, D) show the transform for a set of periodic horizontal lines. The transform pattern also occurs only along the vertical 
axis and the corrugated pattern has been compressed into a periodic set of spikes. This result is similar to the previous case 
for an impulse and a periodic impulse (Fig. 7). Note that as the pattern spreads out in image space, its transform contracts 
(and vice versa). Panels C and D also illustrate a well-known property of the 2D FFT that a periodic "wall" pattern and a 
periodic array of points are transform pairs of each other.
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Fig. 14 - TIMS aircraft data for the Canon City, Colorado area (14A). Although a more complex noise 

pattern is evident (14C), a variety of filter shapes can be directly applied (14D) and the resulting image 

is shown (14B).



Fig. 15 - Second principle component of TIMS aircraft data for the De Weese Plateau, Colorado. The original data (ISA) are so noisy that theyt appears 
unusable. A 'u-shaped' filter was applied to reduce the horizontal scanline noise (see arrow). Multiple noise patterns are present in these data that become 
evident as more prominent noise is removed. In the next five following figures, filters will be applied successively to remove different types of noise 
Figure 21 provides a summary comparison of the total filtering process. Each figure consists of 6 panels. The left panels are the ima»e (A) and its 
accompanying transform (D). The center panels are the filtered image (B) and its transform (E). The right panels are the difference between the images 
(C) and the transforms (F). Panel C shows the noise that is removedby the filter seen in panel F as bright. To assist in the comparison the left panels in 
each succeeding figure is identical to the center panels(filtered) in the previous figure. J    



Fig. 16 - Full vertical line filters (dark vertical lines in E) applied to remove noise apparent in the transform (bright vertical 
lines in D). The filtered noise is shown in C and the arrow indicates the primary direction of the nosie pattern. See figure 
15 caption for a more complete explanation.



Fig. 17 - An angular harmonic filter. See text and figure 15 caption for a more complete explanation. 
The arrow indicates the direction of the noise being filtered.



'ig. 18 - The diagonal noise (see arrow) was filtered using a short line segment filter in the upper left hand corner of the 
 ansform (18F). See text and figure 15 caption for a more complete explanation.

"9***?



Fig. 19 - A second angular harmonic filter was then applied. See text and figure 15 caption for a more complete explanation 
The arrow indicates the orientation of the noise pattern.



m

Fig. 20 - The last set of filters applied were four short line segments evident in the corners of the transform (20F). The 
[primary noise removed is horizontal (see arrow) and low frequency (C).



'Fig. 21 - A composite of the filters applied in figures 15 through 20. The original image (A) can be compared with the final 
I filtered version (B) and the removed noise (C). The filter patterns are evident in the transform (dark lines on E) and transform^ 
difference (bright lines on F) images.
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Fig. 25 - A TM image of the Canon City, Colorado, area (A) is enlarged first by a factor 5 (B,C,D) and then the center portions 
of these images by an additonal factor 5 (E,F,G) using three methods. The top panels (B,E) are enlarged using pixel replication. 
The middle panels (C,F) are expanded using bilinear interpolation. The lower panels (D,G) are enlarged using the FFT method.



Fig. 26 - A cross-correlation registration of TM to SPOT data of the Canon City, Colorado, area using the FFT To show 
the registration more clearly, the image dynamic range was compressed and a grid of black fiducial marks superposed A and 
C are identical views of the SPOT image. B and D are the unregistered and registered TM images. Three circled fiducial 
marks, coded in white, illustrate the registration changes.



Fig. 27 - A SPOT image of the Canon City area (A) is separated into a low
component (B), and a high frequency "slope" component (C) using a narrow sine function positioned at
ai radial spatial frequency of 20 pixels. Images are 512 pixels by 512 lines.'? .'[ ': <- '.  :


